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1 EVALUATION OF THE PROGRESSIVE LIGHTING

GUIDANCE GENERATION

To validate the progressive scheme that we use to generate light-

ing guidance images, we first compare the proposed approach

with two image-to-image translation methods, Pix2pix [Isola et al.

2017] and SPADE [Park et al. 2019]. Table 1 shows metrics on

the test set. As can be seen, both Pix2pix and SPADE are not as

good as ours in all metrics. As shown in the visual comparison in

Figure 1, they both exhibits some artifacts especially around lights.

Our method significantly reduces the artifacts and generates more

pleasing lighting effects.

We compare results that skip the step to generate a coarse image

with results generated by our progressive approach. As shown in

the table, generated results without the coarse image are not as

good as those generated from the proposed approach. But we can

see it is still better than Pix2pix and SPADE with a shading-albedo

decomposition.

We also conduct experiments to evaluate image quality after the

emission optimization step. Error metrics are shown in brackets in

Table 1. After the optimization, all errors become lower. It demon-

strates the effectiveness of our light emission optimization.

To validate the effectiveness of loss terms in the lighting guid-

ance prediction network, we show ablation study results in Table 2.

2 DETAILS OF EXTERIOR LIGHTING

2.1 Role of Exterior Lighting

The separate interior and exterior lighting components are visu-

alized in Figure 2. The environment light completes the relatively

dark area near the door (first row), and the second row shows the

sunlight predicted by our network, which boosts the realism of the

lighting result.

2.2 Sunlight Prediction Pipeline

Figure 3 shows our sunlight prediction pipeline.

2.3 Lighting during Daytime or Nighttime

With the sunlight prediction pipeline, we can generate exterior

lighting automatically. This is helpful for generating lighting

layouts for a bunch of scenes. In some cases, the user may wish to
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Fig. 1. Comparison of results using different lighting guidance prediction

networks under the same lighting layout.

Table 1. Image Distance Metrics for Different Lighting Guidance

Prediction Networks

Metrics Pix2pix SPADE Ours Ours

(w/o coarse)

MSE 89.43(89.39) 104.96(97.07) 89.05(89.02) 88.62(88.60)

SSIM 0.85(0.85) 0.83(0.84) 0.86(0.91) 0.89(0.91)

PSNR 18.05(16.68) 16.86(16.71) 17.80(19.43) 19.18(19.60)

Results after the emission optimization step is shown in the brackets. For MSE, we
calculate with HDR images which can express the lighting distribution. As SSIM
and PSNR are not suitable for HDR images, LDR images are used.

control whether the lighting results include exterior lighting in or-

der to consider daytime or nighttime conditions. Our system also

supports this scenario. Specifically, our system does not predict the
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Table 2. Ablation Study of the Loss Function in our

Lighting Guidance Prediction Networks

Metrics Ours Ours Ours Ours

(L1 only) (L1 + VGG) (L1 + GAN)

MSE 88.67 88.63 88.65 88.62

SSIM 0.881 0.883 0.884 0.892

PSNR 18.80 19.03 19.05 19.18

The best and the second best results are boldfaced and underlined.

Fig. 2. Role of exterior lighting in our results. The first row shows a scene

with an environment light (skylight). The second row shows a scene

with exterior lighting consisting of an environment light and a sunlight.

The exterior lighting is also predicted by our network and completes our

interior lighting.

Fig. 3. The sunlight prediction pipeline. Our system can automatically gen-

erate sun light by first predict its existence, then predict its direction.

exterior lighting during the light arrangement stage in the night-

time mode, the illumination images for sunlight and environment

light are black. Then, we generate guidance under nighttime with

the lighting prediction network to obtain appropriate nighttime

lighting automatically. Users do not need to perform the tedious

process of removing the exterior lighting and tweaking the

emission of every interior light manually to obtain sufficient

interior lighting.

Figure 4 shows the daytime and nighttime lighting in the same

room. As seen, at nighttime, the interior lighting (e.g., the light-

ing shed by downlights on the wall) becomes sightly brighter to

compensate for the absence of exterior lighting.

3 DETAILS FOR AUTOMATIC WHOLE-ROOM

LIGHTING

3.1 Evaluation of Multi-view Optimization

As we discussed in Section 6.3 in the article, optimization under

one view may not be sufficient in the small fov cases, but can be

Fig. 4. Lighting design of the same room with daytime and nighttime.

Users can specify the time of day in our system.

easily fixed by adding new views. We show result in these case

and compare the optmization under single or mutiple views in Fig-

ure 5. The first three rows show the optimized results using the

lighting guidance generated for different views. View 1 and view

2 are selected with a small field of view, while view 3 has a rel-

atively large field of view. Different views have no or very little

overlap. As shown in row 1 and row 2, lighting in uncovered areas

is not guaranteed (the intensity and color may be inappropriate) if

the viewpoint covers only a small portion of the room. For a view

with larger coverage (row 3), the lighting results are better than for

the previous views. By optimizing under two views with a small

field of view (view 1 and view 2) together, the whole-room lighting

is already ensured, as seen in view 3 (row 4). The last row is the

lighting result optimized under all three views, and the lighting is

almost the same as in row 4, which is good for the whole-room

lighting. It shows that by using more views for larger scene cover-

age, the whole-room lighting can be obtained.

3.2 Pipeline of Whole-room Lighting Optimization

Figure 7 shows our pipeline with whole-room lighting optimiza-

tion. Comparing to Figure 2 in the article, automatic camera place-

ment module is added and light emission is optimized with multi-

ple views.

3.3 Examples of Automatic Panorama with Optimal

Polygon Partitions

We provide some examples of positions of panoramas and room

partitions in Figure 6. There are on average 2.18 polygonal parti-

tions per room in our dataset.

3.4 Calculation of Relative Pixel Footprints

To estimate the relative pixel footprints, we first record the average

depth d, ray direction r, and surface normal n within the pixel dur-

ing ray-tracing. Then, relative pixel footprint P is calculated with

the following equation. This is used as weights in the weighted

non-negative least square problem.

P =
d

−(n · r)

4 PERCEPTUAL STUDY EXAMPLE

We show our UI in the perceptual studies in Figure 8.
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Fig. 5. Comparison of light emission optimization under one to three

views. The first three rows show the optimization results under a sin-

gle view, the fourth row shows the optimization under both view 1 and

view 2, and the last row indicates the results optimized under all three

views.

Fig. 6. Examples of optimal convex polygonal partitions of rooms in our

dataset. Blue dots represent the positions of panoramas.

5 DETAILS FOR RENDERING

We use an in-house Monte Carlo path tracer for rendering all re-

sults. Classic rendering techniques like Next Event Estimation and

ALGORITHM 1: Pseudocode of exponential tone-mapping operator.

dark_coef = 1.2

bright_coef = 1.5

foreach pixel c do
brightness = 0.299 ∗ c .r + 0.587 ∗ c .д + 0.114 ∗ c .b

c∗ =max (brightness ∗ (1.0 − dark_coef) + dark_coef, 1.0)
c∗ =min (brightness ∗ (bright_coef − 1.0) + 1.0, bright_coef)
c = 1.0 − exp (−c )

end

Multiple Importance Sampling are used in the renderer. During the

Next Event Estimation, we sample all light sources to reduce vari-

ance. We found it efficient especially for rendering images with

each light on. We use OptiX denoiser [Chaitanya et al. 2017; OptiX

2021] for obtaining noise-free rendering images.

We use an exponential tone-mapping operator similar to

that in VRay renderer [VRay 2021]. Pseudocode is provided in

Algorithm 1.

6 DETAILS OF THE RULE-BASED BASELINE

We built our rule-based baseline on the basis of an existing state-

of-the-art rule-based method [Jin and Lee 2019]. We enhanced this

method in several aspects to improve its quality and robustness.

Room structure loss. For the placement of the key lights (ceiling

and pendant lamps), only the focal points generated by furniture

groups are considered as positional targets in the original method.

This approach may introduce artifacts if the room is not fully pop-

ulated with furniture or is simply empty. In some cases, the focal

points may also be close to the wall. Such an arrangement of key

lights is usually not suitable for the structure of the room, espe-

cially when we look at the ceiling. Therefore, we add a cost term

to consider the room structure. Specifically, we utilize the auto-

matic strategy described in Section 6.3 to divide the room struc-

ture into a minimal number of convex polygonal partitions (some

example partitions can be seen in Figure 6). We use the centroid of

each partitioned polygon as a focal point. This strategy not only

encourages the key lights to be close to the centers of regions but

also encourages the lights to cover the whole room regardless of

whether furniture exists in a certain region. We have also found it

to be beneficial for ensuring that the key lights are not too close to

the wall.

Light distribution loss. Since multiple key lights can be assigned

to a single focal point in [Jin and Lee 2019], we add a cost term

to encourage the lights to be distributed evenly among the fo-

cal points. To achieve this, we first count the number of lamps

assigned to each focal point. Then, we calculate the variance of

the numbers of lights at all focal points. The optimization process

aims to minimize this variance to achieve a more uniform light

distribution.

Color of lights. The original method optimizes only the light in-

tensities. This approach simplifies the parameter space for easier

optimization, but it limits the scene to be lit only by white lights.

We add support for different colors of lights by optimizing both

the intensity and color temperature of each light. We have also
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Fig. 7. Pipeline for automatic whole-room lighting design. The light emission optimization stage is extended with two modules (solid blue boxes) for

generating pleasing lighting in the whole room.

Fig. 8. Example of user interface in our perceptual studies.

found that this approach is more robust than optimizing the RGB

channels directly.

Global illumination. We use full global illumination with path

tracing instead of considering only two-bounce lighting. This

helps enhance the accuracy of the results to produce lighting

with full global illumination, similar to our method. However, per-

forming full path tracing during the optimization is extremely

time-consuming, and it takes several hours to optimize a single

scene.

Task plane of furniture. Since the original method uses the an-

notated surfaces of some types of furniture (e.g., the top part of

a desk) as the task planes for optimizing illuminance, we extend

the definition of task plane to all types of furniture in our dataset.

Specifically, the task plane of each piece of furniture is the surface

visible from the top-down view.

7 MORE RESULTS

Figure 9 shows more examples of designing pleasing lighting im-

ages under given camera comparing with human designers.

Figure 10 shows more examples of whole-room lighting design

results comparing with human designers. We also provided videos

of whole-room walk-through in the supplementary video.

8 NETWORK ARCHITECTURES AND

HYPERPARAMETERS

Figures 11–18 shows the network architectures and hyperparame-

ters of each module used in our article. Detailed description of each

network’s input and output is shown in Table 3. Our networks are

updated with Adam optimizer [Kingma and Ba 2015].
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Fig. 9. Examples of our generated rendering images with pleasing lighting comparing with human designers.
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Fig. 10. Examples of our generated whole room lighting designs comparing with human designers.
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Fig. 11. NextCategoryNet.

Fig. 12. NextLocationNet.
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Fig. 13. DownlightGAN.

Fig. 14. WallLocationNet.
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Fig. 15. IntensityNet.

Fig. 16. ShadingRefineNet.
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Fig. 17. IntensityNet-Multimodal.

Fig. 18. ShadingRefineNet-Multimodal.
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Table 3. The Input and Output Description of Our Networks

Network Input Output

NextCategoryNet room structure(2) + top-down feature (depth(1),

semantic(1), albedo(3), normal(3)) + bottom-up feature

(depth(1), semantic(1), albedo(3), normal(3)) + light

masks (lights for each type(7), all lights(1)) + existing

lights count vector(7)

placement possibilities distribution vector(8)

NextLocationNet room structure(2) + top-down feature (depth(1),

semantic(1), albedo(3), normal(3)) + bottom-up feature

(depth(1), semantic(1), albedo(3), normal(3)) + light

masks (lights for each type(7), all lights(1))

light occurring probability except for the

downlight(6) + INSIDE category(1) + OUTSIDE

category(1)

DownlightGAN room structure(2) + top-down feature (depth(1),

semantic(1), albedo(3), normal(3)) + bottom-up feature

(depth(1), semantic(1), albedo(3), normal(3)) + light

masks (lights for each type(7), all lights(1))

downlight occurring probability(1) + INSIDE

category (1) + OUTSIDE category(1)

WallLocationNet room structure(2) + top-down feature (depth(1),

semantic(1), albedo(3), normal(3)) + bottom-up feature

(depth(1), semantic(1), albedo(3), normal(3)) + light

masks (lights for each type(7), all lights(1)) + wall

feature (wall top-down feature(8) + wall region mask(1)

+ wall light mask(1))

INSIDE category(1) + OUTSIDE category(1) +

INSIDE wall but not wall lamp category(1) + WALL

lamp category(1)

IntensityNet per light category illumination(7 × 3) + environment

light illumination(3) + sunlight illumination(3)

lighting intensities vector(9) + lighting color

temperatures vector(9)

ShadingRefineNet per light category illumination(7 × 3) + environment

light illumination(3) + sunlight illumination(3) + coarse

shading(3) + albedo(3)

refined shading(3)

IntensityNet-Multimodal per light category illumination(7 × 3) + environment

light illumination(3) + sunlight illumination(3) + random

code (18)

lighting intensities vector(9) + lighting color

temperatures vector(9)

ShadingRefineNet-

Multimodal

per light category illumination(7 × 3) + environment

light illumination(3) + sunlight illumination(3) + coarse

shading(3) + albedo(3) + depth(1) + normal(3) + random

code(18)

Refined shading(3)

The number in the bracket is the image channel number or the vector length.
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