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Fig. 1. Given an interior scene with furniture installed, our system automatically creates a digital lighting design that places different types of lights in the

scenes as well as generates pleasing lighting effects.

Conventionally, interior lighting design is technically complex yet chal-

lenging and requires professional knowledge and aesthetic disciplines of

designers. This article presents a new digital lighting design framework

for virtual interior scenes, which allows novice users to automatically ob-

tain lighting layouts and interior rendering images with visually pleasing

lighting effects. The proposed framework utilizes neural networks to re-

trieve and learn underlying design guidelines and the principles beneath

the existing lighting designs, e.g., a newly constructed dataset of 6k 3D in-

terior scenes from professional designers with dense annotations of lights.

With a 3D furniture-populated indoor scene as the input, the framework

takes two stages to perform lighting design: (1) lights are iteratively placed

in the room; (2) the colors and intensities of the lights are optimized by

an adversarial scheme, resulting in lighting designs with aesthetic lighting

effects. Quantitative and qualitative experiments show that the proposed

framework effectively learns the guidelines and principles and generates
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lighting designs that are preferred over the rule-based baseline and compa-
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1 INTRODUCTION

With the wide usage of digital modeling and design software in

interior design, digital lighting [Birn 2014] is one of the most im-

portant elements in designing an interior space. However, light-

ing design is technically complex and difficult. It conventionally

requires the professional knowledge and aesthetic discipline of de-

signer, because the design of lighting is not only used to lighten a

space but also used to express certain artistry and atmosphere in

interior design. Particularly in the case of interior digital lighting

design, which aims to generate visually pleasing lighting configu-

rations for virtual rooms, aesthetic consideration is often needed.

In the interior design industry, interior designers need to show

their design ideas using photorealistic and visually pleasing render-

ings or VR experiences. Nowadays, general users can also redesign

their homes through online interior design tools [Coohom 2022;

Planner5d 2022]. In a standard digital lighting design procedure, a

designer must model and adjust the lighting in the 3D virtual in-

door scene and perform various lighting experiments [Birn 2014]

to achieve the desired lighting effect. Even with the latest commer-

cial digital design tools [3ds Max 2021; Maya 2021; VRay 2021], the

entire process is still iterative with trials and errors, making the
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process time-consuming. An easy-to-use or even automatic digital

lighting design approach is needed, especially for novice designers.

Many interactive or automatic digital lighting design tools and

methods have been proposed to facilitate design by allowing de-

signers to manipulate additional lighting features [Pellacini et al.

2002; Schoeneman et al. 1993], paint shadows and highlights [Lin

et al. 2013; Pellacini et al. 2007], or explore different lighting plans

with image galleries [Marks et al. 1997; Shapira et al. 2009]. Jin

et al. [2019] proposed an automatic indoor lighting method with

heuristic lighting design guidelines. Explicit principles and guide-

lines of lighting design are important in the aforementioned meth-

ods to guarantee accuracy and validity. However, with the aes-

thetic consideration in the design process, directly and explicitly

obtaining these guidelines and principles from digital lighting de-

signers and artists is difficult.

With the rapid development of deep learning-based techniques,

data-driven approaches allow researchers to implicitly explore de-

sign principles and guidelines. Many data-driven interior design

systems have been proposed. These systems seek to automate of in-

terior furniture arrangement [Ritchie et al. 2019; Wang et al. 2019,

2018b], interior floorplan design [Hu et al. 2020; Wu et al. 2019],

and architecture and planning design [Chaillou 2019]. Addition-

ally, several datasets of 3D indoor scenes [Fu et al. 2021; Handa

et al. 2016a; Li et al. 2021; Roberts et al. 2021; Song et al. 2017] have

been presented along with these methods. The results show that

the underlying design guidelines and principles in the data could

be automatically retrieved and learned using neural networks.

Inspired by these methods, we propose a deep learning-based au-

tomatic digital lighting design framework in this article. However,

several challenges still exist in the development of such a light-

ing design framework. First, none of the existing public datasets

on 3D interior scenes can be directly used for the lighting design

task. Most of these datasets [Avetisyan et al. 2019; Handa et al.

2016a, b; Li et al. 2021; Roberts et al. 2021; Song et al. 2017] focus

on scene understanding, and the visual quality of their lighting ef-

fect is not guaranteed. Some datasets [Avetisyan et al. 2019; Handa

et al. 2016b] lack important lighting information, such as labels of

different lights, a list of light fixture models, and correct emission

surface of light fixture models. Second, lighting design has unique

design guidelines that are different from those for furniture layout

or room planning. For example, some lights illuminate the entire

space, providing a global atmosphere, while others lighten small

regions, enabling local artistic effects. The lighting design should

consider many factors of the scene, such as the room structure,

furniture layout, and room style. Combining all these factors and

learning in 3D space is still challenging.

To tackle the aforementioned challenges, we first construct

a dataset with 6k 3D scenes, in which the lighting layouts are

designed by professional lighting designers. Annotations of the

lights, such as different light type, intensity, and color and emis-

sion surfaces, are all labeled and stored in these scenes. The dataset

is available for online access1 in the MINERVAS platform [Ren

et al. 2022] to inspire more research. Then, we design an auto-

matic lighting procedure with two steps: (1) selection and arrange-

ment of lights in the scene; (2) optimization of the colors and

1https://coohom.github.io/MINERVAS/lighting-design.

intensities of lights. A light fixture arrangement pipeline extended

from the iterative prediction scheme [Ritchie et al. 2019] is built

in the first stage, where we extend the image-based scene repre-

sentation [Wang et al. 2018b] to specifically represent the spatial

information of the room for lighting design, such as encoding the

ceiling and walls. Once the light placement is completed, another

deep learning-based scheme is employed in the second stage to

compute the intensity and color of lights. Technically, an adver-

sarial network is trained and utilized to guide this optimization,

where synthetic images and real indoor photographs are consid-

ered in the training process to facilitate the capture of additional

lighting styles in real indoor scenes through optimization.

The experimental results demonstrate that the proposed frame-

work effectively learns the lighting design principles in the dataset

and generates quantitatively and qualitatively good results. User

studies show that the lighting design results are comparable to

those of professional human designers.

The main contributions of this article are as follows:

• The first deep learning-based automatic interior digital light-

ing design framework, which generates lighting design re-

sults comparable with those of human designers.

• An interior scene dataset including good lighting layouts with

extra information and annotations of lights.

• An image-based representation of scenes for lighting design,

which not only contains room layout information but also in-

cludes ceiling and walls.

• An adversarial light intensity optimization, including syn-

thetic and real interior lighting design images, resulting in

aesthetic lighting effects with diverse lighting styles.

2 RELATED WORK

Computer-aided lighting design. There are two main goals in the

computer-aided lighting design. One goal is pleasing and aesthetic

lighting of 3D scenes for rendering [Birn 2014], which is the aim

of our work. Another goal is helping the real-world lighting de-

sign with accurate computer-based lighting simulation consider-

ing physical realization [Gordon 2015]. Both the lighting design in

real-world and digital 3D scenes is a complex task requiring pro-

fessional interior lighting design principles and guidelines [Birn

2014; Gordon 2015]. In both of these tasks, designers need to ad-

just the position, color, and intensity of each luminaire, which is

considerably time-consuming, especially in a trial-and-error loop.

Therefore, providing a good computer-aided design tool for light-

ing designers is a long-standing topic. The goal-based rendering

method [Kawai et al. 1993] was proposed to provide designers

with an intuitive method of lighting design to address this prob-

lem. Some studies [Pellacini et al. 2002; Schoeneman et al. 1993]

enabled designers to directly manipulate lighting features, such as

shadows and highlights, instead of specific light parameters. Pel-

lacini et al. [2007] provided a painting interface to allow design-

ers to paint the lighting effect. Kerr et al. [2009] gave a formal

evaluation of the lighting design interface. Lin et al. [2013] used a

coarse-to-fine strategy with a hierarchical light representation to

determine the optimal lighting parameters given painting strokes

of shadows and highlights. With this strategy, users can control

the number of lights by providing different thresholds.
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Fig. 2. Overview of our automatic lighting design framework. Given (a) an indoor scene with the furniture as input, our pipeline first extracts (b) an

image-based scene representation and then predicts (c) the light arrangement in the room. Once all lights have been placed, we use a path tracer to render

(d) images with each light on and the others off. Using these illumination images as input, we generate (e) a lighting guidance image and optimize (f) the

intensity and color of each light. Finally, we obtain (g) the resultant lighting layout and rendering results with pleasing lighting effects.

In addition to lighting feature manipulation and user-painted

goals, Schwarz et al. [2014] defined constraints for exterior light-

ing design procedurally using extensions to a grammar language,

which is originally used to model buildings. These methods fa-

cilitate the lighting design process by allowing users to control

specific and local lighting effects (e.g., shadows and highlights). A

class of methods based on the image gallery has been proposed to

help users control the overall tone and mood of the lighting [Marks

et al. 1997; Shapira et al. 2009]. Technically, these systems use

visual exploration instead of tweaking parameters, that is, pro-

viding a batch of recommendations and allowing users to itera-

tively refine the gallery to converge to their ideal design. Shimizu

et al. [2019] proposed a system that aids exploratory theatrical

lighting design. The color and intensity are determined using the

statistics of reference images given by designers. The most recent

advancement in lighting design tools is that of Walch et al. [2019],

who presented an interactive interface with guidance to improve

lighting design, provenance visualizations, and quality informa-

tion for real-world lighting design workflow.

However, the aforementioned methods all require some human

interaction and cannot generate lighting designs automatically.

Shacked et al. [2001] provided an automatic lighting design ap-

proach for a single object by manually defining and optimizing a

perception-based image quality objective function. Jin et al. [2019]

had a similar goal to this paper. They designed a set of objective

functions based on lighting design guidelines and used procedural

and optimization-based approaches to generate the lighting layout.

Such explicit guidelines may restrict the diversity and authenticity

of the results.

Unlike these works on lighting for single object [Shacked and

Lischinski 2001], exterior lighting [Schwarz and Wonka 2014], and

real-world interior lighting [Shimizu et al. 2019; Walch et al. 2019],

our system focuses on interior digital lighting like [Jin and Lee

2019; Lin et al. 2013], which aims to generate visually good lighting

layouts for virtual 3D rooms. It is the first attempt to utilize neural

networks to learn lighting design guidelines and principles from a

dataset implicitly without defining them manually.

Data-driven interior design. Numerous studies are available in

the field of automatic interior design. Most of these studies focus

on indoor scene synthesis. Early investigations [Merrell et al. 2011;

Yu et al. 2011] require pre-specified sets of objects as input and

optimize position and rotation of furniture with interior design

principles and statistical pair-wise relationships. Deep learning-

based indoor scene synthesis methods have been proposed with

the availability of a large-scale 3D scene dataset. Some methods

represent the 3D scene and learn object arrangement using re-

cursive neural networks [Li et al. 2019] or generative adversarial

networks [Zhang et al. 2020b]. Wang et al. [2018b] proposed a

top-down image-based representation and utilized convolutional

neural networks to synthesize indoor scenes. Following this

work, Ritchie et al. [2019] proposed a method to accelerate the

synthesis process and boost the visual quality of synthesized

scenes. PlanIT [Wang et al. 2019] is a framework that combines

high-level relationship graphs for planning and spatial prior

networks for instantiation. Similarly, Wu et al. [2019] generated

floorplans given boundaries based on learned spatial prior in

the field of floorplan design, and Hu et al. [2020] used graphs to

represent floorplans for user-in-the-loop design. Most recently,

transformer architecture is introduced in the interior design task

to obtain faster [Wang et al. 2021] and order-independent scene

synthesis [Paschalidou et al. 2021].

Unlike these data-driven interior design concepts, our work tar-

gets a different problem, automatic lighting design, which bears

some similarity to automatic indoor scene synthesis but requires a

different solution. To our knowledge, the proposed framework is

the first deep learning-based interior lighting design work.

Image visual enhancement. The visual perception of a rendering

image directly reflects the quality of lighting design. Bychkovsky

et al. [2011] presented the MIT-Adobe FiveK dataset, which

contains 5k images modified and retouched by five experts. They

used this dataset to learn the global tonal adjustment. After this,

many deep learning-based image enhancement methods emerged.

Yan et al. [2016] proposed a deep learning-based photograph en-

hancement method. Ignotov et al. [2017] showed that the mapping

between photos captured by mobile and DSLR cameras could be

effectively learned from neural networks. In recent years, gener-

ative adversarial networks [Goodfellow et al. 2014] have achieved

significant progress in image synthesis and have successfully gen-

erated photorealistic images [Karras et al. 2020]. GANs can also

boost the visual perception of images, which can be regarded as a

subproblem of image-to-image translation. Isola et al. [Isola et al.

2017] proposed a general image-to-image translation framework

based on conditional adversarial networks [Mirza and Osindero

2014]. Two-way GANs, such as CycleGAN [Zhu et al. 2017a],

DISCOGAN [Kim et al. 2017], and DualGAN [Yi et al. 2017], have

been proposed to address the unpaired dataset problem. Numerous
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studies further improved the image quality with coarse-to-fine

architecture [Wang et al. 2018a], global features in the gener-

ator [Chen et al. 2018], conditioned feature modulation [Park

et al. 2019; Wang et al. 2018; Xu et al. 2019], and shading-albedo

decomposition for rendering [Bi et al. 2019]. In addition to these

end-to-end approaches, Hu et al. [2018] utilized deep reinforce-

ment learning and GANs to predict a sequence of filters to enhance

photos using the unpaired dataset. A good visual perception met-

ric [Talebi and Milanfar 2018] is also an important factor in

enhancing the style and quality of a photograph. Instead of gener-

ating a visually enhanced image with networks directly, our work

utilizes enhanced images as guidance to optimize light parameters

in the 3D scene. In this way, the generated interior lighting images

are physically correct and have aesthetic lighting effects.

3 OVERVIEW

Given a 3D furniture-populated indoor scene as input, our digital

lighting design framework automatically selects and places lights,

computes their colors and intensities, and finally obtains an illumi-

nated 3D scene and rendering results with pleasing lighting effects

(Figure 1). The entire process is driven by principles and guidelines

learned from existing lighting design data.

When we prepared the data, we found that none of the exist-

ing indoor 3D datasets include high-quality annotations of lights.

Therefore, we constructed a dataset ourselves, specifically for the

lighting design task (Section 4). This contains 6k 3D scenes with

lighting layouts designed by professional designers, 8k synthetic

images, 3k real interior photographs from the Internet, and a li-

brary of different types of lights.

Based on the collected data, we design a two-stage lighting de-

sign pipeline with a light arrangement stage (Section 5) and a light

emission optimization stage (Section 6). The rationale behind such

a two-stage pipeline is that the arrangement of lights is usually

functional and sometimes plays a role in decoration. The underly-

ing principles and guidelines of light placement are very relevant

to the furniture, furniture layout, room structure, style of room de-

sign, and so on. However, the emission of light is different from

the light arrangement. It is difficult to learn the emission directly

from 3D scenes, whereas it can be learned from interior images.

Synthetic images in virtual scenes and photographs captured in

the real world provide good guidance on what good artistry light-

ing should be. Therefore, we design different and specific solutions

to learn principles and guidelines of light placement and emission

from different types of data.

The two-stage pipeline is illustrated in Figure 2. In the first stage,

an iterative placement scheme is presented to place different types

and numbers of lights, where an image-based scene representa-

tion (Figure 2(b)) is utilized to represent the 3D scene (Figure 2(a)),

thereby simplifying the design of the neural networks. After the

lights are placed (Figure 2(c)), in the second stage, we use an ad-

versarial scheme to optimize the color and intensity of each light.

A lighting guidance prediction network is used to predict an im-

age with pleasing lighting effects from a camera view (Figure 2(e)),

where synthetic images and real indoor photographs are both uti-

lized to train the prediction network. Then, we use this lighting

guidance as the target to determine the intensity and color of each

light (Figure 2(f)). After the entire optimization process, we obtain

the 3D room with the lighting layout and optimized lighting pa-

rameters (Figure 2(g)).

4 DATASET

For a deep learning-based approach, a well-labeled dataset is im-

portant and essential. After surveying most 3D interior scene

datasets, we found that no dataset was specifically constructed for

interior lighting design. Therefore, we built a dataset ourselves.

Figure 3 shows the overview of the proposed dataset. First, it in-

cludes about 6k interior scenes (Figure 3(a)), which were all de-

signed by professional interior designers. In the creation process,

the professional designers considered both the realism and aesthet-

ics of interior scenes to build realistic digital indoor scenes and

generate pleasing renderings for interior design. Note that the in-

terior designs in our dataset were mostly styled in Asia. Each piece

of furniture in the scene was given a semantic label, and we used

the NYUv2 40 label set [Silberman et al. 2012], which covers most

common objects. Each scene includes designer set cameras, each

of which corresponds to at least one high-quality synthetic im-

age with elaborately designed digital lighting effects. In addition

to these synthetic images, we collected real interior photographs

from commercial websites. We also constructed a library of lights

that stores all lights used in these scenes. We categorize these lights

into groups, and for each light, we store the light type, color and in-

tensity or luminous intensity described by IES profiles and labeled

emission surfaces.

3D Scenes. In total, we collected 6,648 3D scenes with 8,177 cam-

era views in these scenes, where each scene has at least one camera

view. Each scene contains the complete information of the room

structure, furniture layout, and lighting layout with light types and

positions. All the scenes and furniture in our dataset are scaled to

the same sizes in the real world.

2D images. The visual quality of lighting design is usually con-

veyed by interior images. Therefore, a set of high-quality, aesthetic

interior images is important for lighting design. Since each 3D

scene contains at least one manually set camera view, we render

these views using our in-house Monte Carlo path tracer to obtain

synthetic high-quality interior images, as shown in Figure 3(d). To

represent the lighting effect of each light, we also render images

with only one light on (see Figure 3(e)). In addition to these syn-

thetic images, we collected a set of real photographs with high-

quality interior lighting from airbnb.com. These photographs are

usually captured by professional photographers and show realistic

lighting effects with more details. This helps us to generate more

visually pleasing digital lighting in the light emission optimization

process (Section 6).

Library of Lights. When designers design interior lighting, they

need a library of lights to select and place. While accomplishing

this task, we also build a library of lights. We collect all light fix-

tures in our dataset and group them by type. In total, we have seven

types of light fixtures: chandeliers, ceiling lamps, downlights, table

lamps, floor lamps, wall lamps, and bedside pendant lights. Exam-

ple 3D models of the light fixtures are shown in Figure 3(c). Each

light model should have appropriate emission surfaces rather than
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Fig. 3. Overview of the dataset. Our dataset contains (a) professionally designed scenes and (b) lighting. We build (c) a library of lights, which covers all

lights used in the dataset. We use a path tracer to render the scenes to obtain (d) high-quality synthetic images and (e) lighting images for each light.

shining light from all surfaces. To ensure this, we create a labeling

tool to fix light models with incorrect emission surfaces.

We split our dataset into training, validation, and test sets at a

ratio of 70%-15%-15%. Some statistics of the dataset are presented

in Figure 4. The distribution of room areas in the dataset is given

in Figure 4(a). There are two peaks at approximately 30 m2 and

13 m2, corresponding to the standard sizes of a living room and

the bedroom, respectively. Additionally, the wide range of room

areas shows that our dataset includes a large diversity of rooms,

such as study rooms, bathrooms, and balconies. The distribution of

the number of cameras in each room is shown in Figure 4(b). Most

scenes have only one camera, which is sufficient to cover most of

the area, while others have multiple camera views. In Figure 4(c),

we show the distribution of the number of rooms with specific cat-

egories of lights. We group these types to obtain categories accord-

ing to their function. Chandeliers and ceiling lamps are named

as key lights. Table lamps, floor lamps, wall lamps, and bedside

pendant lights are named as auxiliary lights. The total numbers of

rooms containing certain types of lights and the average numbers

of lights per room are shown in Figure 4(d). The statistics show that

downlights and chandeliers are the most frequently used lights in

our dataset.

5 LIGHT LAYOUT ARRANGEMENT

In this section, we describe the algorithm to automatically se-

lect and place lights. Inspired by previous work in indoor scene

furniture arrangement and floorplan design [Ritchie et al. 2019;

Wang et al. 2018b; Wu et al. 2019], we first convert the 3D in-

door scene into an image-based scene representation and then iter-

atively place lights in it, where the locations and types of lights are

determined by neural networks specifically trained for arranging

the light layout.

5.1 Image-based Indoor Scene Representation

Image-based indoor scene representations have been widely used

in many interior design applications, such as furniture arrange-

ment [Ritchie et al. 2019; Wang et al. 2018b] and floorplan synthe-

sis [Hu et al. 2020; Wu et al. 2019], where a top-down view is uti-

lized to represent a room, furniture, and floorplan. Unfortunately,

Fig. 4. Statistics of our dataset: (a) the room areas, (b) the numbers of

camera views per room, (c) the numbers of light categories per room, and

(d) the numbers of rooms with different types of lights.

such a representation is not sufficient for our lighting design task.

For example, most key lights are placed on the ceiling, and a wall

lamp is always placed on the wall. However, a 3D representation,

such as voxels, is complex and data-intensive for networks. There-

fore, we extend the top-down view representation to an image-

based scene representation, which is still defined in 2D space but

covers more of the structural information of the 3D interior scene.

An example of our image-based scene representation is shown

in Figure 5. It is a set of images encoding several scene features:

Room structure images. We use a room mask image to indicate

the occupancy of one room from a top-down view, where the pixels
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Fig. 5. Image-based scene representation. Our representation contains multiple features in the indoor scene, including two room structure images, eight

top-down feature images, eight bottom-up feature images, eight light mask images, C × 9 wall feature images, and C images of light masks for lights on

the wall.

within the room are set to 1, otherwise 0. We employ a wall mask

image to label walls, doors, and windows, where the pixels are set

to 1.0, 0.5, and 0.75 for walls, doors, and windows, respectively.

Top-down feature images. Several top-down images are utilized

to show the furniture layout and encode different pieces of furni-

ture in the room, where depth, albedo, normal, and semantic labels

of the room with furniture allow the network to better distinguish

different objects.

Bottom-up feature images. Bottom-up feature images are similar

to top-down images but contain information on the ceiling. This

kind of feature image is important for obtaining an appropriate

arrangement for chandeliers, ceiling lamps, and downlights.

Wall feature images. The wall is an essential feature in lighting

design. Wall lamps should be placed on walls. Downlights also il-

luminate the wall and objects on it (e.g., artworks). Visual lighting

effects on walls have been widely used for artistic and atmospheric

purposes. To represent a wall in an image-based representation, we

project each wall onto the floor along the outside room direction

(similar to pushing the wall down) and record it with the entire

room as a top-down image, where all objects and furniture on the

wall are projected with the wall. We also encode the depth, albedo,

normal, and semantic labels of walls into the wall feature images.

Specifically, an extra mask image is used to indicate the region of

the projected wall in the top-down image.

Light mask image. We use a light mask image to identify the

locations and types of lights in the scenes. For each light, we use a

square centered at the location of the light to act as the light mask.

Such a mask simplifies the representation and training process. For

key lights, we use a larger square (10 × 10), and we use a smaller

square (5 × 5) for other lights. To separate lights with different

categories, we store light masks in separate images, each of which

encodes one light category. Different colors are used to represent

different types of lights: red, orange, yellow, green, cyan, blue, and

purple are used to represent ceiling lamps, chandeliers, downlights,

table lamps, floor lamps, wall lamps, and bedside pendant lamps,

respectively. This bears some similarity to the methods of handling

different types of furniture in previous works [Ritchie et al. 2019;

Wang et al. 2018b]. For each wall, we also project corresponding

wall lamps to the wall feature images to obtain a light mask for

wall lamps.

We use a path tracer with orthogonal cameras to obtain the

aforementioned feature images of a 3D scene. The camera is placed

in the center of the floor and set at 80% the height of the room. The

camera renders top-down and bottom-up images by looking down

and up, respectively. Although the camera position is set heuristi-

cally, it successfully splits the furniture and ceiling in all cases. To

obtain wall feature images, we place the camera 1m away from the

wall, which captures almost all furniture or decoration adjacent to

the wall. Each image has a resolution of 256 × 256 and represents

a physical 15m × 15m space, which covers most of the rooms in

residential buildings. The image-based scene representation of a

room consists of 26 images, including 2 room structure images,

8 top-down feature images (one channel for depth and semantic

and three channels for albedo and normal), 8 bottom-up feature

images, 8 light mask images (7 channels for lights of each type

and 1 channel for all lights). For each wall, the image-based rep-

resentation consists of 10 images, including 9 wall feature images

(8 channels for top-down wall features and a single channel mask

indicating the region of the projected wall) and an image of the

light mask for the lights on the wall.

5.2 Light Arrangement

Inspired by learning-based scene synthesis work [Ritchie et al.

2019; Wang et al. 2018b; Wu et al. 2019], our light arrangement

pipeline uses an iterative prediction scheme (Figure 6). Each iter-

ation contains two basic steps: (1) the Select Light Category step

determines the category of the light to be placed and selects one

light; and (2) the Predict Light Location step places the selected

light, where specific placement strategies for downlights and wall

lamps are developed.

5.2.1 Select Light Category. We utilize a neural network,

named NextCategoryNet, to determine whether the existing light

layout is satisfactory and the process can be stopped or whether

more lights should be placed. The input of NextCategoryNet is the

image-based scene representation along with a vector indicating

the number of lights of each type in the existing light layout. The

output is a distribution of placement possibilities for light cate-

gories, where we add “stop” as one category. Given the existing
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light layout, the network performs a classification task to make

the decision.

The network architecture is a Resnet-18-based classification

network, similar to that used in previous work [Ritchie et al. 2019].

As this is a standard classification task, we use cross-entropy loss.

When training the network, we randomly remove lights from

the scenes in our dataset to create a training set. We find that if

we give a canonical order to place light fixtures rather than an

entirely random order, then it will stabilize the training process.

Therefore, we sort the lights in all scenes by a predefined type

order (the order shown in Figure 4(d)). We find that such an order

simulates the lighting design procedure of human designers in

practice to some degree. Lighting designers usually place the key

light first, increase the atmosphere using downlights, and then

enhance local lighting using auxiliary lights. Note that this order

is only used in the training process.

5.2.2 Place Light. When placing lights, we first develop a net-

work, named NextLocationNet, to place the majority of types of

lights, and then we design specific placement strategies for down-

lights and wall lamps (Figure 6).

This NextLocationNet is a Resnet-34-based network augmented

with atrous spatial pyramid pooling (ASPP), similar to that

used in previous work [Wu et al. 2019]. The input of NextLoca-

tionNet is the image-based scene representation. The output is a

(2+6)×256×256 prediction map, which is a “heatmap” indicating

the probability of light occurring per pixel, where 6 is the number

of categories other than the downlight. Specifically, the prediction

map is over (2+6) categories per pixel, which are the 6 light types

(this pixel belongs to a certain light category), INSIDE (this pixel

is inside the room but does not belong to any lights), and OUT-

SIDE (outside the room). The INSIDE and OUTSIDE categories are

beneficial for this network, because they provide clues for plac-

ing lights only in the indoor region. Previous work [Ritchie et al.

2019] shows that even with one selected category, the generation

of a prediction map of all categories rather than a prediction map

of the selected category will help to obtain a stabilized distribu-

tion. Therefore, we also generate the prediction map for all light

categories. Once we obtain the prediction map, we place the light

at the location with maximum probability. Since this network per-

forms a per-pixel classification task, we use averaged pixel-wise

cross-entropy loss to train it.

Downlight Arrangement. The arrangement of downlights is

more difficult than that of other lights. We observed in the dataset

that the number of downlights is usually larger than that of other

lights (as seen in Figure 4), and these downlights illuminate a rel-

atively large region, which involves many conditions to be con-

sidered, such as the room structure, the shape of the ceiling, and

the arrangement of furniture. In addition, designers usually design

downlights in some symmetric patterns and utilize them to play an

important role in determining the visual effect and lighting atmo-

sphere upon basic lighting. We found that the iterative prediction

scheme used for other lights is not good at capturing global ar-

rangement patterns of downlights, such as alignment and symme-

try. In Figure 16, we provide some comparisons to illustrate this.

This problem was also mentioned in previous work [Wang et al.

2019, 2018b] where the iterative prediction module struggles to

generate a symmetric arrangement of objects.

We propose a conditional generative adversarial network,

named DownlightGAN (Figure 6 III), to predict the arrangement

of all downlights at once rather than an iterative placement.

In DownlightGAN, the discriminator learns to discriminate the

generated result in a global perspective, such as by checking

the overall alignment and symmetry, which is exactly what is

preferable in the placement of downlights. After comparing

many real and synthetic samples, the discriminator is able to

discriminate the arrangement of downlights using important

features such as symmetry. Thus, the symmetry feature is more

likely to be learned by the generator network. Our network

architecture is based on Pix2pixHD [Wang et al. 2018a] but is

different in terms of the output, where the generator network of

DownlightGAN outputs a per-pixel possibility. The network input

is the image-based scene representation. The target is a labeled

image that contains the square mask of downlights and the labels

of pixels INSIDE and OUTSIDE. We use GAN loss and feature

matching loss as in Wang et al. [2018a]. More details can be found

in the supplementary document.

At runtime, the network generates a coarse layout of downlights

in the prediction map (Figure 6(b)), and we vectorize it to obtain

specific positions for individual downlights. Specifically, we fit the

predicted noisy data to a set of squares using a scan line-based al-

gorithm similar to that in Wu et al. [2019]. After vectorization, the

centers of the squares represent the positions of downlights (Fig-

ure 6(c)). However, even with the generative adversarial network,

some artifacts may exist; e.g., some downlights may not be exactly

in a straight line. To handle these problematic cases, we align the

downlights with heuristic lighting design guidelines. Specifically,

we find the nearest wall of the downlights using a given threshold

of 0.7m as the default. Then, we align the downlights with the wall,

where the downlights are set with the same distance to the wall

and the same interval between two lights. For downlights that are

not aligned with any wall (e.g., a sequence of downlights along the

center of a corridor), we align them based on grid-based downlight

arrangement design guidelines [Jin and Lee 2019]. Specifically, we

align downlights vertically and horizontally. For vertical cases, we

measure the horizontal axis values between all pairs of downlights

and group downlights with similar values (given a threshold of 0.15

m) to form groups. We then align downlights within each group

vertically. The same process is used in the horizontal direction. Af-

ter the alignment, we obtain an enhanced version of the downlight

arrangement (Figure 6(d)). Note that DownlightGAN predicts all

downlights at once, which means there is no need to place down-

lights again for NextCategoryNet. We do not exclude the category

selection phase directly, because the training data of NextCatego-

ryNet imply that a downlight should no longer be chosen if it al-

ready exists, which can be learned by NextCategoryNet.

Wall Lamp Arrangement. A wall lamp is a good choice to create

lighting in a room without wasting any valuable floor space. It

plays both lighting and decoration roles. Wall lamps need to be

placed on the wall, but it is challenging to find a single image

that contains all wall features without overlap and preserves

the relationships with the room structure. Therefore, we first
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Fig. 6. Light layout arrangement pipeline. The pipeline inputs an image-based scene representation of the room and iteratively places lights in the scene

in two steps: the Select Light Category step and the Place Light step. There are three submodules in the Place Light step: Predict Next Location, Place Wall

Lamp, and Arrange Downlights. An orange square represents a chandelier, a yellow square represents a downlight, and a blue square represents a wall lamp.

use NextLocationNet to find the coarse position (Figure 6(e)),

i.e., one wall, and then predict a precise location on the wall

(Figure 6(f)). This procedure is shown in Figure 6 IV. To obtain

the precise location, we design an end-to-end network, named

WallLocationNet, to predict a distribution of locations on the wall

similar to that of NextLocationNet.

The architecture of WallLocationNet is similar to that of NextLo-

cationNet. The input is the image-based scene representation with

wall feature images and wall lamp mask of the selected wall. The

coarse wall lamp position in a top-down view and existing wall

lamps on the selected wall are all included as light masks. Com-

pared with NextLocationNet, we add more tags to label output pix-

els: OUTSIDE, INSIDE top-down view, INSIDE wall but not wall

lamp, and WALL lamp. In some cases, the placement of wall lamps

also exhibits asymmetric patterns. Therefore, we perform a similar

alignment to that in the downlights arrangement by aligning wall

lamps at the same height if there is more than one wall lamp on

the same wall.

Neural networks in the light arrangement stage (Figure 6) are

trained individually similar to previous works [Ritchie et al. 2019;

Wang et al. 2018b; Wu et al. 2019].

5.3 Selection of the 3D Light Model

After arranging the locations of different lights, we place them

in the scene. Specifically, we select the 3D model of each light

from the light library, and then we place the light model to make

sure the emission surface points in the correct direction, e.g., a

chandelier points down, and a wall lamp points outward. Selecting

a good 3D model of a light is a complex task that is worthy of

further research [Chen et al. 2015; Liu et al. 2015]. In this article,

we use a simple method to sample a model from the light library,

similar to that proposed in Ritchie et al. [2019]. Technically, we

first collect the light-object pairwise prior, i.e., the occurrence

frequency of each light-object pair existing in the same room,

and the light model occurrence frequency prior in the training

set. Here, we use object to represent both furniture model and

light model. Given a specific type of light to select, we calculate

the probability of selecting each light model of this type from the

pairwise prior and multiply them with the occurrence frequency

of each light model to calculate a probability distribution for the

models with the given category. Then, we randomly sample one

light model from the computed probability distribution.

5.4 Exterior Lighting

In interior digital lighting design, exterior lighting also plays an

important role in some cases [Birn 2014]. Therefore, we include a

separate module after all interior lights have been arranged to han-

dle exterior lighting. In particular, we model exterior lighting as an

environment light (skylight) with a directional light (sunlight). We

assume that the environment light is uniform with constant emis-

sion. For sunlight, we learn the direction from the dataset. In de-

tail, similar to other lights, we first employ a network to determine

whether to place sunlight, and then we use a network to predict

the direction. The input of these networks is image-based scene

representation without any light. Once the sunlight direction is

determined, its emission is predicted along with all other lights in
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the light emission optimization stage. Please refer to the supple-

mentary document for more details.

6 LIGHT EMISSION OPTIMIZATION

In this section, we describe the optimization used to compute the

emission of each light. The proposed light emission optimization

pipeline consists of two steps, as shown in Figure 7. First, we use

a network to predict a lighting guidance image, which provides

neural network-generated lighting effects. Since this is a synthetic

result lacking the physical guarantee, we use it as the target image

to solve the light emission optimization for the intensity and color

of each light.

6.1 Generation of Lighting Guidance Image

Inspired by the human design process [Birn 2014; Shimizu et al.

2019], we first utilize neural networks to imagine a pleasing light-

ing image under a view as the guidance. Lighting guidance images

can have diverse styles and be enhanced using real photographs.

6.1.1 Lighting Guidance Prediction Network. Even with all the

lights that are placed, we find that it is still challenging to directly

generate a good quality lighting guidance image. Therefore, we em-

ploy a progressive scheme that first generates a coarse image and

then refines it to the final lighting guidance image. The entire

process is shown in Figure 8. An evaluation of this progressive

scheme is given in the supplementary document.

We use a network named IntensityNet to generate the coarse

image. IntensityNet takes seven illumination per light category im-

ages and two illumination images for the environment light and

sunlight as input (Figure 3(e)), where each light illuminates the

scene using a unit emitted radiance (i.e., cd/m2), and all illumina-

tions of lights in the same category are summed to be one illumi-

nation per category image. Note that each image here is stored

with high dynamic range without tone-mapping to preserve its

emission properties. By obtaining these per-category images, In-

tensityNet predicts the scale and color of each category and then

uses them to combine different category images and generate the

coarse lighting guidance image. Here, we use the color tempera-

ture to represent the color instead of RGB, since we found that it

could improve the robustness of the training. The network uses

Resnet-34 to downsample the input lighting images to a latent 512

vector. Afterward, there are two network branches for predicting

the intensity and color temperature of each light category sepa-

rately, which consist of a sequence of fully connected layers. Please

refer to the supplementary document for more details.

In generating the coarse image, the light intensities and colors

are assumed to be the same for lights in the same category. Since

this constraint is strong, we propose a second network named as

ShadingRefineNet to refine the lighting to a more accurate predic-

tion. We use conditioned feature modulation [Xu et al. 2019] to

better integrate the features into the network. To better predict

lighting in images rather than modifying the albedo of scenes [Bi

et al. 2019], we split the shading and albedo before giving it to the

network and multiply the albedo back after the output is obtained

to determine the final predicted lighting guidance image.

Several types of loss are proven to be helpful in this image gener-

ation task. First, we use L1 loss on both coarse and refined lighting

guidance to ensure that they are as close as possible to the target

image. Then, we add VGG loss [Johnson et al. 2016] to better align

with the feature and style in the target image. Additionally, we use

GAN loss to enhance our image quality. Inspired by Bi et al. [2019],

we use two discriminators to guide the predicted shading and re-

fined lighting guidance.

The training of these two networks is performed progressively.

We first train IntensityNet using loss on the coarse lighting guid-

ance. Afterward, we add the ShadingRefineNet and loss on the re-

fined lighting guidance to train them together.

6.1.2 Lighting Diversity. The lighting guidance prediction net-

works can be extended to a multimodal version and generate light-

ing styles with greater diversity. Specifically, we apply the loss of

BicycleGAN [Zhu et al. 2017b] to our networks to generate diverse

lighting guidance. A latent code is added as input of both Inten-

sityNet and ShadingRefineNet to control the lighting style. With

the ability of BicycleGAN loss, the mapping of the latent code and

lighting style is ensured. Please refer to the supplementary doc-

ument for the network architecture and loss function. Similar to

the original training procedure, we train the multimodal version

progressively. With this network, our system can generate diverse

lighting styles, as shown in Figure 13.

6.1.3 Lighting Enhancement. As the lighting guidance image

is used as a visual objective, we can further enhance it by consid-

ering more data, such as real interior photographs. We proposed

an optional lighting enhancement stage (dotted box in Figure 7)

to achieve this. We collect 3k photos from the Internet and utilize

them to improve the guidance image. Unlike for the learning on

synthetic data generated by 3D scenes, these photos are unpaired

data and cannot be directly used to train the networks used in

generating lighting guidance. Instead, we utilize CycleGAN [Zhu

et al. 2017a], a classic image-to-image translation method for

unpaired data. CycleGAN incorporates more realistic and visually

pleasing lighting styles in the lighting guidance image and finally

improves our lighting design results. Please refer to the Results

section for more comparisons. Note that, though we use real pho-

tos to enhance lighting, any image collection with user-preferred

style can also be utilized here to bake the style into the generated

lighting.

6.2 Optimization of Intensity and Color

After obtaining a lighting guidance image, the optimization of the

intensity and color of each light becomes relatively simple. The

final image is a combination of the intensities of all lights with

different RGB scale coefficients. As such, it can be treated as an

optimization problem that takes the lighting guidance as the tar-

get and determines the scale coefficients of each light. Similar to

previous work [Lin et al. 2013; Schoeneman et al. 1993], we solve

this problem with a non-negative least squares solver [Nelder and

Mead 1965]. We use gradient descent in the lighting enhancement

stage, because the LDR target image and tone mapping break the

problem’s linearity. Once all intensities and colors are obtained,

we can use them to render the scene and obtain physically correct

lighting images.
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Fig. 7. Light emission optimization pipeline. Our light emission optimization pipeline consists of two steps, guidance image prediction and optimization,

as shown in the blue and green blocks, respectively. Our pipeline can also utilize real-world photographs to enhance our lighting effects with CycleGAN.

Fig. 8. Lighting guidance prediction networks. Our networks first produce coarse lighting guidance with IntensityNet and then use ShadingRefineNet to

generate the final lighting guidance image. Adversarial discriminators are used to refine the lighting guidance.

6.3 Optimization for Whole-room Lighting

In our framework, we simulate the lighting procedure of human

designers by performing lighting optimization at certain camera

views. However, in some cases that the view covers a small space

of the room, the lighting design according to only one view may

bring unnatural lighting for other views. Additionally, some digi-

tal lighting applications may require a walk-through video rather

than single rendering image. To address these cases, the aforemen-

tioned optimization at one camera view in our system could be

extended to multiple camera views covering the whole room to

ensure a good whole room lighting.

To enable whole-room lighting guidance prediction, we first par-

tition the 2D room structure into a set of regions using an algo-

rithm that can generate a minimized number of convex polygonal

partitions [Greene 1983]. Then, we place six cameras to construct

a panorama in the centroid of each partitioned polygon. Lighting

guidance images are predicted in these views, which can cover the

whole room. In the light emission optimization stage, we combine

all views and optimize them simultaneously to obtain the whole-

room lighting. However, according to the camera’s position, the

object near the camera may occupy the most area of the lighting

guidance image in its view, which makes the optimization process

view-dependent. Ideally, a pixel in the guidance image that covers

more area of the room should be more important in the optimiza-

tion. To address this problem, we weighted the loss pixel-wisely by

the relative area of pixel footprints; thus, the light emission opti-

mization becomes a weighted non-negative least squares problem.

With automatic cameras generation with full room coverage and

the view-independent optimization process, our system can auto-

matically generate pleasing lighting for the whole room. Please re-

fer to the supplementary document for more details. In rare cases

where the centroids of partitions may collide with an object, we

temporarily remove the object for proper rendering.

Note that our multimodal lighting guidance prediction network

is also suitable for multi-view optimization. This network can gen-

erate consistent lighting styles with the same latent code as input,

avoiding mixing multiple diverse styles in different views. Please

refer to the supplementary video for the results of whole-room

lighting with different styles.

7 RESULTS AND EVALUATION

We use PyTorch [Paszke et al. 2019] to implement all the proposed

networks in this article, and we train and test our framework on

a PC with an Intel Xeon E5-2630 v3 CPU and an NVIDIA GeForce

RTX 2080Ti GPU. Please refer to the supplementary document for

more details of the networks and the training process.

In the supplementary video, we show an automatic process us-

ing the proposed system to obtain the digital interior lighting of

one 3D indoor scene. Once the scene is obtained, the system takes

5 seconds on average to construct the image-based representa-

tion, executes for around 3 to 10 seconds to arrange the lights ac-

cording to different numbers of lights to be placed, and computes

for about 2 seconds to optimize the emission of lights. The most

time-consuming step of the entire lighting design process is path

tracing-based rendering, which may take seconds to minutes due

to different numbers of samples per pixel and the 3D scene model

complexity.

7.1 Qualitative Evaluation

Comparison with designers. In Figure 9, we compare our results

with those of professional lighting designers in the dataset. We

show two results generated by our method. Figure 9(a) shows

the initial scenes without light installed rendered using ambient

occlusion. Figure 9(b) shows the results learned directly from the

dataset, where the light emission is guided only by the prediction

network (named “ours”). Figure 9(c) shows the results enhanced by
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Fig. 9. Visual comparison between our results and lighting designs created by human designers. The first row shows the initial 3D scenes rendered with

ambient occlusion. The second row shows images with lighting designs created with only synthetic data. The third row shows our results enhanced using

interior photographs. The results created by human designers are shown in the last row.

real interior photographs (named “ours (enhanced)”). Comparing

ours and ours (enhanced), in most cases the enhanced result has a

slightly brighter and warmer lighting style. We also observed such

a difference between the synthetic lighting images and captured

real photographs. By comparing our results with those of human

designers, we can see that our lighting layout arrangement is

reasonable and naturally integrated into the room and furniture.

In terms of lighting effects, both of our results show comparable

lighting to that of the images from humans. In some cases, our

enhanced results show even better aesthetic and pleasant lighting

effects than those of professional designers.

Comparison with the rule-based method. To evaluate the effec-

tiveness of our learning-based lighting design framework, we com-

pare our system with a state-of-the-art rule-based lighting layout

optimization method [Jin and Lee 2019]. This method optimizes

the light placements and intensities simultaneously using simu-

lated annealing optimization. Multiple rules derived from interior

lighting guidelines are used to consider pairwise relations, hierar-

chy, circulation, illuminance, and collision. In this work, the target

positions of key lights (ceiling lamps or chandeliers) are aligned

with the centers of the furniture groups, which are constructed

based on the connection strength [Xu et al. 2014] of the furniture.

Downlights are placed on a uniform grid considering the room size

and existing key lights. Other auxiliary lamps are placed in accor-

dance with specified pairwise relations (e.g., the target position of

the floor lamp is to the side of the sofa). Light emission is optimized

to reach the target illuminance on the task plane of the furniture.

To adapt this method to our scenes, we calculate the average illu-

minance for each type of furniture from our dataset to use as the

target illuminance. As an optimization-based method, this method

requires high-quality prespecified light objects for a scene as input.

To satisfy this prerequisite for its best performance, we directly

provide the set of light objects in each human-designed scene. Fur-

thermore, because the original method lacks consideration of the

room structure (e.g., no key light in a region with few pieces of

furniture) and optimizes only white light and two-bounce light-

ing, we introduce additional considerations to enhance its results.

Please refer to the supplementary document for more details about

our adaptations and improvements to the original method [Jin and

Lee 2019].

Figure 10 shows the visual comparisons of the results of the

rule-based baseline method and our method. The first row shows

the light layout visualizations in orthogonal views (top-down and

bottom-up views). The following two rows show a set of rendered

images from different views in a whole room. As seen from the

bottom-up views, which show the light arrangement on the

ceiling, our method can generate light arrangements that better

fit the room structure and furniture arrangement compared to

the rule-based baseline. Specifically, the output of the rule-based

baseline lacks the downlights in the corridor (the first and fifth

columns), and there may be multiple key lights (the first and third

columns) or no key light (the fifth column) in some regions split by

the ceiling pattern. The placement of the pendant lamps may also

be not in the center part of the ceiling pattern (the first column).

The main reason for these shortcomings of the rule-based baseline

is that the complex ceiling pattern and other information, such as

the room structure and furniture arrangement, are difficult to fully

encode in explicit rules. As a result, incomplete rules will lead to

problems in generalization. For example, the rules for downlight
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Fig. 10. Visual comparisons of the rule-based method and our method. The top row shows the visualizations of the light arrangements from top-down and

bottom-up views. It is seen that our method can generate light layouts that better fit the room structure and furniture arrangement. Sufficient lighting for

the whole room is achieved in our method, while the rule-based baseline often fails to place downlights in the corridor. Inappropriate arrangements of key

lights (e.g., not suitable for the ceiling pattern, no or multiple key lights in one space) also appeared in the results of the rule-based baseline.

arrangement have difficulty considering all possible complex room

structures. For the arrangement of key lights, we find that it is dif-

ficult to find a threshold for constructing the furniture groups that

is suitable for all scenes, and thus, in some scenes, the rule-based

approach may fail to produce the correct number of focal points.

Furthermore, even if the target focal points are appropriately gen-

erated, key lights may be either excessively aggregated or lacking

in some regions. A similar phenomenon has also been mentioned

in the comparison of the arrangement baseline with a deep learn-

ing scene synthesis method [Wang et al. 2018b]; for example, two

chairs may be aggregated to the same desk even though there are

two desks in the room. This is a known failure mode caused by con-

flict between multiple pairings. More rules need to be introduced

to help mitigate this phenomenon. To address these problems,

we added a cost term to consider the missing factor of the room

structure and another cost term to resolve pairing conflicts. How-

ever, we still observed similar failure cases in some results. Thus,

we found that this behavior is also caused by instability of the

optimization process. The optimized results may become trapped

in local minima and thus may be sensitive to the initial random-

ized layouts. In contrast, our method encodes all corresponding

information implicitly and does not suffer from the instability

of the optimization process. Thus, we can produce better light

arrangements.

As seen from the rendered images, our method can illuminate

the whole room adequately, whereas in some results of the base-

line method (the first and fifth columns), the corridor is dark due

to missing downlights. Moreover, some lights do not achieve ad-

equate emission (e.g., the floor lamp in the fifth column). Our

method generates more accurate lighting guidance on more sur-

faces and thus can mitigate this phenomenon.

Perceptual Studies. Since it is very subjective to judge the light-

ing effect of renderings, we conducted two-alternative forced-

choice perceptual studies to evaluate the quality of our lighting

design. Unlike the perceptual studies for furniture arrangement

and floorplans in previous works [Wang et al. 2018b; Wu et al.

2019], the perceptual evaluation of the whole-room lighting design

is more complicated, because it is difficult to represent the design

using a single image, and the evaluation needs to be done from

multiple perspectives. To evaluate the lighting design in the whole

room, we selected two or three views for each scene and ensured

that the views could cover almost all the objects in the room. We

used three or four images to represent a scene with its lighting

design. One was the top-down image with annotated light masks

and cameras, and the others were rendered images under differ-

ent views. Then, we recruited participants to make a side-by-side

comparison between two scenes. For each pair of comparisons, we

designed three questions motivated by previous work [Jin and Lee

2019], which evaluate the lighting design as a whole.

• Q1: Which scene has a more appropriate light arrangement

(position and number)?

• Q2: Which scene has a more visually comfortable lighting

effect?

• Q3: Which scene has a more appropriate light placement and

brightness to interact with the furniture?

Each participant performed 24 comparison tasks that are sorted

randomly. In one out of 12 comparisons, we perform a “vigilance

test,” where the participant is given an obviously unpleasant light-

ing design result (the lights were placed randomly with random

intensity and color) to check whether the participant was paying

attention. The results from participants who failed the “vigilance

test” are filtered out.

We conducted two perceptual studies to compare the lighting

designs of ours and ours (enhanced) with the designs from hu-

man designers separately. Since the light arrangement remains un-

changed between ours and ours (enhanced), we only asked Q1 once

in these two studies. We also conducted a perceptual study to com-

pare our lighting designs with the designs from rule-based baseline.

We control the light objects to be the same in this comparison by

using the light objects from our lighting designs for the rule-based
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Fig. 11. Statistics of perceptual studies. Ours-E represents ours (enhanced).

The orange lines show the ratio of users preferring the designs generated

by our method to those of human designers. A 0.5 ratio shows a compa-

rable preference, and a higher ratio indicates a greater preference for our

method. The blue bar is the 95% confidence interval computed by Boot-

strap [Efron and Tibshirani 1986].

baseline. The number of participants enrolled in these three per-

ceptual studies was 32, 34, and 37, respectively. We obtained a total

of 30 participants who passed the vigilance test in each perceptual

study. Half of the participants in each perceptual study were profes-

sional interior designers recruited from interior design companies,

and the remaining half were general users who were students in

computer science. The age of the participants ranged from 19 to 42,

and the professional designers enrolled had an average of 3.2 work-

ing years. Each participant who passed the vigilance test took on

average 24.04 s to compare two scenes. Figure 11 shows the statis-

tics of our perceptual studies for different evaluation aspects using

ratio bars similar to the studies of Wang et al. [2018b].

As shown in the figure, neither general users nor professional

designers show a preference between ours and human-created

designs in the three aspects, which indicates that our system gen-

erates lighting designs comparable to those of human designers.

In contrast, our method outperforms the rule-based baseline in all

three aspects. Moreover, professional designers give higher scores

than the general users in this comparison, which shows that

our system learned professional lighting design principles better.

In the study of ours (enhanced), the ratio indicates that users

have a greater preference for our enhanced results than those

of human-created designs in terms of lighting effect. This shows

that the lighting learned from high-quality interior photographs

generally brings more pleasing lighting effects than that from ren-

dered synthetic images. This is mainly because real photographs

include more realistic lighting effects and more visually pleas-

ing aesthetic lighting styles, which is preferable. Although the

pleasing aesthetic lighting style may also be caused by elaborate

post-processing by the photographer, our system also successfully

optimizes the lighting parameters to achieve enhanced lighting

effects without the need to post-process the image manually. Note

that the comparison results of enhanced lighting and human-

created design only shows our system has a potential to generate

Fig. 12. Comparison of lighting design results in the same room structure

with different furniture layouts. The red, orange, yellow, green, and cyan

represent the ceiling lamps, chandeliers, downlights, table lamps, and floor

lamps, respectively.

such user-preferred lighting; the enhancement results under other

collection of user-specified images are not guaranteed.

Evaluation of the structural relationship learned by the networks.

Our approach learns lighting layouts from furniture and scenes. In

Figure 12, we show the results under different furniture arrange-

ments in the same room. The lighting design changes with the

change in furniture layout, which implies that our network has

learned the relationship between lights and furniture. It is also in-

teresting that the location of the chandelier is almost fixed in the

example scenes. This shows that the key light is learned mostly in

relation to the room rather than the furniture, since the key light

is usually designed to illuminate a large space. In contrast, local

lights show a tighter relationship with furniture. As can be seen,

the floor lamp is placed on the side of the cabinet or sofa in the first

and third examples of the living room scene, and the desk lamps

are placed on the nightstands in the bedroom scene. Some down-

lights also vary according to the furniture arrangement, such as

the downlights above the piano in the second example of the liv-

ing room and the downlights above the bedside in the bedroom.

Results of diverse lighting designs for the same scene. As shown

in the first row of Figure 13, our light arrangement can generate

different arrangements for the same scene by sampling from the

probability distribution produced by NextCategoryNet and NextLo-

cationNet, which is similar to previous works [Ritchie et al. 2019;

Wang et al. 2018b; Wu et al. 2019]. In addition, our approach sup-

ports generating different lighting styles using the multimodal gen-

erative networks mentioned in Section 6.1.2. The second and third

rows of Figure 13 show different lighting styles generated by our

system.

Result visualization using t-SNE. We visualize the distribution

of light arrangements in the test set using t-SNE [Van der Maaten

and Hinton 2008], as shown in Figure 14. Specifically, we represent
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Fig. 13. Our system can generate different lighting designs for the same scene. The first row shows different light arrangements, and the second and third

rows show different lighting effects produced under the same light arrangements.

Fig. 14. Visualization of the distribution of light arrangements in the test

set using t-SNE. Our method generates light arrangements (b) similar to

the reference (d) and can generate more diverse light arrangements (c),

which makes the distribution denser.

light arrangements using light mask images and then perform

t-SNE dimension reduction with PCA initialization to visualize

them. Our method is closer to the human results than the rule-

based baseline, even though the rule-based baseline has the same

number of lights as the human-designed scenes. Results also show

that our method can generate a denser t-SNE visualization than

the human one by generating more light arrangements for the

same scene. Multiple patterns can also be found in the results,

which shows the diversity of the room’s structural space and the

corresponding light arrangement.

Results of whole-room walk-through. Figure 15 shows a walk-

through of a room with our predicted lighting. Pleasing and con-

sistent lighting is obtained for the whole room. Room partitions

and positions of panoramas for lighting prediction are visualized

in Figure 15(a). Please refer to the supplementary video for more

examples of whole-room walk-through.

7.2 Quantitative Evaluation

Besides qualitative evaluations, we conduct several quantitative

evaluations.

Neural image assessment. To evaluate the quality of our lighting

design, we use a quantitative metric known as neural image

assessment [Talebi and Milanfar 2018]. We use a neural network

trained on the Aesthetic Visual Analysis (AVA) dataset [Murray

et al. 2012], which has been used as a reliable quantitative metric

for aesthetic evaluation. Table 1 shows the statistics of the results

generated by our method and the lighting designs in the dataset.

This shows that our score is close to those of the professional

designs both in the preference percentage and average score.

Our enhanced results have higher scores in both metrics. The

preference percentages are similar to the results in the perceptual

study shown in Figure 11, which also shows the validity of both

evaluations.

Evaluation of light arrangements. To evaluate the quality of the

light arrangement, we compare our approach with two baseline

methods. The first is an iterative prediction method similar to that

of the previous work [Ritchie et al. 2019]. It uses iterative place-

ment for downlights instead of our DownlightGAN. When adopt-

ing this method to our situation, the network is the same as ours ex-

cept for the extra arrangement step for downlights. Another base-

line method is called LampGAN. It uses a generative adversarial

network to generate all lamps, where each lamp is extracted from

the prediction map by the vectorization method in our Downlight-

GAN. The network architecture of LampGAN is the same as that

of our DownlightGAN, which uses Pix2pixHD [Wang et al. 2018a].

Our approach can be regarded as a hybrid model of these two

baselines. We use the iterative framework for most of the lights

but use LampGAN to arrange downlights. The comparison results
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Fig. 15. The digital lighting design generated by our system can be experienced in a free-view walk-through (b); please refer to our supplementary video

for the complete walk-through video. In this example, the room partitions and positions of panoramas are shown in (a).

Table 1. Aesthetic Evaluation Using Neural Image

Assessment [Talebi and Milanfar 2018]

Metrics Ours Ours (enhanced) GT

Preference percentage 49.23% 62.69% -

Average score 5.329 5.384 5.337

Standard deviation 0.217 0.215 0.221

The metrics of our results are close to the human-designed results, and
our enhanced results gain better scores.

Table 2. Comparison between Different Light

Arrangement Methods

Metrics Iterative model LampGAN Ours

classification 78.25 76.00 62.75

KL-divergence 0.0570 0.1062 0.0072

Our method achieves the best results in both classification accuracy
and KL-divergence with the reference scenes in the dataset.

of these three models are shown in Figure 16. Each row shows the

results of different methods in the same room. The iterative model

has difficulty obtaining a good result for the arrangement of down-

lights. It may aggregate multiple downlights. The quality of Lamp-

GAN ’s result is much better, but it suffers from unbalanced light

categories. For example, auxiliary lights rarely appear in the re-

sults. We guess this is due to the mode collapse of the GAN, where

the overall distribution of the data is not grasped well by the net-

work and some features in the data are lost. Our light arrangement

combines the advantages of these two: the diversity of the layouts

generated by the iteration-based model and the reasonable layout

of downlights from LampGAN.

To further validate the results of our light arrangement, we

use a classification network to quantitatively evaluate the results

of our method and the baselines and take the lighting designs

in the dataset as reference data. The closer our results are to the

reference, the more difficult it is for the classification network to

classify them, resulting in a lower classification accuracy. Similar

to Ritchie et al. [2019], we use a Resnet-34-based classifier. The

training dataset contains 1,500 results, half of which are the

results we want to compare, while the other half are the results in

the dataset from human designers. Four hundred images are used

for testing. The classification accuracy of the different methods is

shown in Table 2. The iterative model has a relatively high accu-

racy, indicating that it has a larger difference in the distribution

Fig. 16. Comparison of light arrangements using (a) a pure iterative pre-

diction model, (b) a generative adversarial network, (c) our lighting design

pipeline, and (d) humans. Different colors indicate different categories of

lights (Section 5.1). The results show that LampGAN usually has a rea-

sonable downlight arrangement (Rows 1, 2, 3) but always ignores some

categories of lights. The iterative model does not have such a symmetric

arrangement, and downlights may be aggregated in some cases (Rows 1, 2).

However, different categories of lights can be sampled reasonably (Rows

3, 4). In contrast, our method has all these advantages and produces light

arrangements comparable to those of human designers.

compared to the reference. LampGAN has a lower accuracy but is

still higher than ours. Our results are the most indistinguishable,

showing the best consistency with the lighting designs in the

dataset.

In addition, we evaluate the distribution of light categories gen-

erated in the results. Specifically, we calculate the KL divergence

between results generated by different methods and scenes in the

dataset, as shown in Table 2. Similar to what we discussed ear-

lier, the category distribution of LampGAN is relatively poor. We

found that for lights that do not appear frequently in the dataset,

such as floor lamps and bedside pendant lamps, LampGAN gener-

ates hardly any of them. The category distribution of the iterative

model is better than that of LampGAN but still worse than ours.

We think this is because it is difficult for the NextCategoryNet in

the iterative model to predict each downlight.
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7.3 Discussion and Limitations

As the first deep learning-based method attempting to design inte-

rior lighting automatically, our method also has several limitations.

Typical examples are shown in Figure 17. First, in some cases (Fig-

ure 17(a)), our approach does not take the orientation of light into

account. This is because most lights are symmetrical to illuminate

the environment evenly in all directions. This is not a problem for

most chandeliers, ceiling lamps, downlights, and bedside pendant

lamps. For wall lamps, we ensure that the up direction is from the

floor to the ceiling. However, symmetrical placement may not be

ideal for floor lamps or table lamps with an asymmetric model. In

future work, our framework can be extended to consider the ori-

entation using an orientation prediction module such as that in

Ritchie et al.’s work [Ritchie et al. 2019]. Second, as a learning-

based approach, our method may fail in some cases that are rare in

the dataset. Figure 17(b) shows an example where the ceiling has a

complex style pattern that has not been learned before (the down-

lights above the television overlap with the ceiling pattern, and

the downlights in the corridor deviate from the center slightly).

More training data may help in this case. Third, as we discussed in

Section 5.3, we use a simple scheme to select light models, which

may cause a style compatibility problem in some cases (such as

Figure 17(c), where the two table lamps have different models). In

most other cases, such a scheme selects the same table lamps be-

cause only one model has the highest possibility. However, more

models with similar possibilities may result in incompatible mod-

els in some cases. We believe that, in future work, a better model

selection scheme could be exploited.

8 CONCLUSION AND FUTURE WORK

In this article, we propose the first deep learning-based digital light-

ing design framework. It automatically generates visually pleas-

ing lighting designs utilizing the guidelines and principles learned

from an interior lighting dataset with 6k 3D scenes, 8k views, and

3k real photographs. Under the evaluation of a series of quan-

titative and qualitative experiments, our framework successfully

adapts to various room structures and furniture arrangements and

generates lighting designs that are comparable to those of profes-

sional human designers.

Future work. In addition to some future work mentioned in the

limitations section, there are several directions available for fur-

ther exploration. First, our framework is capable of generating

lighting designs fully automatically. However, in some cases, the

designer needs an interactive human-in-the-loop design. For exam-

ple, more constraints may be added, such as the number of lights

of each type and the relationship between the furniture and room

structure. Our framework could also integrate more constraints

by using a graph representation [Hu et al. 2020; Wang et al. 2019].

Designers could also control the lighting style using customized

visual objectives [Shimizu et al. 2019]. Although our system aims

for automatic lighting design, it can also be naturally integrated

into the human design loop to facilitate the lighting design pro-

cess. Specifically, human designers can adjust the light configura-

tions manually on top of our result and then run the light emission

optimization stage again to generate lighting design that more fits

to their design goal. For predicting the whole-room lighting, our

Fig. 17. Some failure cases of our method. (a) shows that some light fix-

tures have an inappropriate orientation (e.g., the floor lamp in the figure).

(b) shows that our downlight arrangement struggles to handle complex

ceiling patterns. (c) shows an incompatible model selection case.

system places the cameras to cover the whole room by considering

the occlusion from the room layout. Though most parts in the res-

idential rooms can be covered in this way, some parts occluded

by the furniture may be neglected. Some recent works on cam-

era placement problems like Sun et al. [2021] can be utilized to

obtain max-coverage placement considering complex occlusion in

the scene. We would regard these as future works.

Additionally, the framework is designed to generate lighting de-

sign in a room instead of a whole floorplan. Users need to design

the lighting in rooms one- by-one to obtain a whole lighting de-

sign for an entire floorplan. A new lighting design approach for

a whole floorplan is another future research direction. A larger

space may bring more difficulty for neural networks. Our frame-

work generates results across multiple types of residential rooms.

Except for living room, dining rooms, and bedrooms shown above,

more results for kitchen, kids’ room and study room can be found

in the supplementary document. In addition to residential rooms,

our framework could be extended to other types of indoor scenes,

such as restaurants and office spaces. However, the correspond-

ing datasets should be available first. We would like to extend our

dataset to include more interior scenes in the future. Although dig-

ital lighting designs with diverse styles can be obtained in our sys-

tem, our lighting result is always a pleasing lighting effect learned

from the dataset. In some cases, rare and special lighting effects

of expressing a particular mood are also needed, especially in the

movie and games industry. How to facilitate this design task de-

serves to be explored. Recent advances in differentiable rendering

techniques [Jakob et al. 2022; Li et al. 2018; Zhang et al. 2020a]

make it possible to optimize lighting parameters with physically

based path tracing in gradient-based optimization. This is also de-

served to be explored.

As our system aims for interior digital lighting design, the most

important but challenging task for the future is to push the cur-

rent approach to real-world lighting design by considering more

factors in physical realization [Gordon 2015]. Several aspects need

to be considered for achieving this goal: First, the light-fixture li-

brary in our dataset does not have an available set of discrete real-

world power and color temperature parameters for each light. Ad-

ditionally, not all light fixtures have an IES profile. A more realis-

tic and better physically annotated light-fixture library should be

built. Second, as lighting design is a complex task affecting differ-

ent human activities, ergonomic aspects should be considered in

real-world lighting designs (such as glare). Additionally, as real-

world lighting corresponds to human activity and the time of day,

lighting design supporting lighting modes for different activities
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deserves to be explored. Some more complex constraints, such as

energy savings and cost savings, can also be considered in real-

world lighting design.
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